Development of New Low-Resource Magnetometers

Completed Technology Project (2016 - 2018)

Project Introduction

Traditional space-based magnetometers are deployed on a boom that extends from the spacecraft to reduce exposure of magnetic noise from the spacecraft that could potentially contaminate measurements. This project furthers the development and testing of a new magnetometer designed for CubeSats that does not need a boom. To allow placement of these economical, science-grade instrument magnetometers on and inside the satellite bus instead of on a boom, algorithms are developed that identify and eliminate spacecraft magnetic noise.

Anticipated Benefits

These low cost instruments fulfill the stringent requirements for low-amplitude and high-precision measurements while reducing the complexity of their integration on spacecraft by eliminating the need to be placed on a deployable boom. This enables highly-affordable high-quality magnetic field measurements to be made.

Primary U.S. Work Locations and Key Partners

Development of New Low-Resource Magnetometers

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Target Destinations	3

Small Spacecraft Technology

Development of New Low-Resource Magnetometers

Completed Technology Project (2016 - 2018)

Organizations Performing Work	Role	Туре	Location
University of Michigan- Ann Arbor	Lead Organization	Academia	Ann Arbor, Michigan
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations	
Maryland	Michigan

Project Transitions

August 2016: Project Start

August 2018: Closed out

Closeout Summary: To be demonstrated on U of Michigan M-BARC CubeSat sc heduled for 2018 ISS deployment

Project Website:

https://www.nasa.gov/directorates/spacetech/small_spacecraft/index.html#.VI

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

University of Michigan-Ann Arbor

Responsible Program:

Small Spacecraft Technology

Project Management

Program Director:

Christopher E Baker

Program Manager:

Roger Hunter

Principal Investigator:

Mark Moldwin

Technology Maturity (TRL)

Small Spacecraft Technology

Development of New Low-Resource Magnetometers

Completed Technology Project (2016 - 2018)

Target Destinations The Sun, Earth			
The San, Earth			

